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FAST AND RELIABLE APPROXIMATIONS FOR 
INTERPLANETARY LOW-THRUST TRANSFERS 

Damon Landau* 

A three-step process bridges the gap between lower-fidelity solutions that ignore 

optimal dynamics and fully optimized solutions that are computationally 

expensive to generate. First, analytic solutions for transfers with free time and 

angle characterize the evolution of the shape and orientation of the orbit. Next, 

optimal control theory supplies the thrust vector with variable specific impulse 

while satisfying flight time and transfer angle constraints. Transfers with the 

additional constraint of constant specific impulse then provide a more realistic 

thruster model for preliminary trade studies. These approximations deliver a 

hundredfold improvement in run time at the expense of a few percent error in 

mass. 

INTRODUCTION 

A broad view of the trajectory design space is an indispensable asset when formulating a mission 

concept. By gathering a complete view of the available trajectory options, lower cost and more robust 

designs often emerge, especially for problems where there are no existing prior point designs. While 

comprehensive trajectory maps are generally available for ballistic or impulsive transfers (e.g. 

interplanetary “pork-chop” plots or Poincaré maps), the generation of analogous maps for low-thrust 

transfers is a relatively tedious and time consuming process. The inherent difficulty lies in the infinite paths 

available to transfer from one state to another while thrusting. Approaches that have been successful for 

global trade space exploration include optimization, steering laws, and shape-based approaches. Each of 

these come with unique benefits and drawbacks: optimization produces the best solutions, but is 

computationally demanding with many iterations and unreliable convergence behavior; steering laws are 
faster with a single propagation, but are qualified as nearly optimal and typically neglect phase constraints; 

shape-based approaches are analytic and very fast, but generally produce infeasible thrust profiles, 

requiring subsequent optimization to produce reliable trajectories. 

We seek a method to globally search low-thrust trajectories and inform trade studies of interplanetary 

missions in real time. The approach must therefore be fast (return results within the hour) and reliable (near 

uniform convergence with feasible and optimal thrust) to make decisions during concurrent design session 

whether the mission design is feasible. We consider transfers from an initial heliocentric state (3-

dimensional position and velocity) and time to a final state and time, where maximum available thrust 

varies with the inverse square of distance from the sun. This model reflects the jet power of a solar electric 

propulsion system with constant specific impulse. The transfers are built in three steps of increasing 

accuracy and optimality as summarized in Table 1. The trajectories are modeled in a set of orbital elements 
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chosen specifically for this problem, and optimized by iterating on Lagrange multipliers (i.e. the “indirect 

method”) with special care taken to increase the region of convergence. 

Table 1. A three-step process efficiently builds up to a fully optimal transfer. 

Solution 

Phase 

Initial guess 

for state 

Initial guess 

for control 

Accounts 

for phase 

# of state 

variables 

Thrust 

constrained 

Partials 

wrt state 

First 

Approximation 
no no no 4 no no 

Suboptimal 

Refinement 
yes no yes 4 no no 

Optimal 

Bounded Control 
yes yes yes 7 yes yes 

 

APPROACH 

Orbital Elements 

The state of the spacecraft is specified by a set of orbital elements associated with the coordinate frame 

of Eq. (1), where  ˆ ˆ ˆx y z are inertial and ĥ  lies along the orbital angular momentum. This set is 

referred to as “axial elements” because they are designed for transfers where the angular momentum 

remains nearly orthogonal to an inertial axis x̂ , i.e. ˆˆ ˆg h x  . The orientation may also be specified 

through sequential rotations of hY along x̂  then hX along ĝ . 
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  (1) 

The transformation from position r (with magnitude r) and velocity v to the axial elements is similar to 

traditional equinoctial elements [1]. As implied by Eq. (1) hX and hY are determined in Eq. (2) solely by the 

angular momentum vector. Then Eq. (3) determines the components of the eccentricity vector (in the 

orbital plane), and Eq. (4) specifies the true longitude along the orbit. The semi-latus rectum is a good 

choice for the final element, as it is valid for elliptical, parabolic, and hyperbolic orbits. However, for low-

thrust transfers (often involving multiple revolutions) we are mainly concerned with elliptical orbits, and 

the semi-major axis ultimately results in a more succinct expression of the variational equations. 
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 ˆ ˆcos ,  sinT TL f r L g r= =r r  (4) 

 ( )1 2 Ta r = − v v  (5) 

The conversion from axial elements back to position and velocity is the same as with equinoctial elements. 
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 ( ) ( )2 21 1 cos sinX Y X Yr a e e e L e L= − − + +  (6) 

 
( ) ( ) ( )2 2

ˆ ˆcos  sin  

ˆ ˆ1 sin cosX Y Y X

r L f r L g

a e e e L f e L g

= +
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 

r

v
 (7) 

The variational Eqs. (8) are also similar to those of the equinoctial elements [2] with the exception of 

the out-of-plane terms, which is to be expected as the axes are oriented differently. In these equations ar, a, 

ah are disturbing acceleration (e.g. due to thrust) in the local radial-transverse-normal frame. Upon 

inspection of Eqs. (8) it becomes apparent singularities exist when hX = ±. However, hY is an ignorable 

coordinate as is does not show up in the variational equations, thus the out-of-plane motion is completely 

decoupled from the in-plane dynamics when hX is close to zero. As we shall see, it is extremely rare for the 

angular momentum vector to stray from the line connecting initial and final orientations along optimal 

interplanetary transfers. Thus the judicious choice of 0
ˆ ˆˆ

fx h h  avoids these singularities because hX 

optimally remains near zero. (The input position and velocity are initially rotated to an inertial frame with

0
ˆ ˆˆ

fx h h  then rotated back for output.) We thus trade the coupled equinoctial equations with a single 

singularity (when the orbit goes completely retrograde), for axial elements that remain decoupled and 

circumvent the singular axis as the orbit optimally transfers from initial to final orientation. 
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where  

 ( ) ( )2 2 21 cos sin 1X Y X Yh e L e L r a e e = + + = − −   (9) 

Because the dynamics are sensitive to the fast variable L and do not depend on time, it is advantageous 

to switch the independent variable from time to true longitude. The acceleration a due to solar electric 

propulsion varies as 1/r2, leading to a natural choice of control u in the form of Eq. (10). These two 

modifications to the variational equations cancel the r2 terms in Eq. (11). With the assertion that 1xh the 

variational equations with respect to L then become Eqs. (12). In this set of elements, hX, hY, and t become 

ignorable coordinates and only dt/dL depends on  = ln a.   

   ( )2T

r hu u u r = =u a   (10) 
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First Approximation 

An initial guess for how the “slow” elements (, eX, eY, hX, hY) vary with respect to each other is 

determined by initially ignoring phase angle and time. We begin by solving for the optimal thrust program 

to minimize the square of the control magnitude over a single orbit, Eq. (13). The motion of the eccentricity 

vector is tracked in orbital plane coordinates for each orbit, where Eq. (15) maps the change in axial 

coordinates to orbital plane coordinates. We account for the equations of motion while minimizing J by 

adjoining Eq. (16) to the objective via Lagrange multipliers in Eq. (17). For time-free transfers the control 

can be vanishingly small and the Lagrange multipliers remain constant [1]. The partial of J* with respect 

to the controls u provides the optimal control profile, Eq. (18). Then, the choice of how the elements 

change  per orbit determines the Lagrange multipliers in Eq. (19) by substituting Eq. (18) into Eq. (16), and 

governs the cost of Eq. (21). 
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Equation (20) is the solar electric analogue of the constant thrust approximation developed by 

Edelbaum [3]. Unlike the constant thrust case changes the semi-major axis and eccentricity are coupled, 

which significantly complicate the calculation of F-1. We circumvent this nuisance by nullifying the off-

diagonal terms in F and approximating the cost of an uncoupled system. (This approximation remains 

accurate for moderate eccentricities.) The choice of quadratic cost in Eq. (13) simplifies the optimization 

over a single orbit, but a minimization of the magnitude of the control, Eq. (22), is ultimately desired for 

typical low-thrust transfers. The Cauchy-Schwarz inequality Eq. (23) provides an approximation of the 

minimum magnitude of this cost in Eq. (24). Thus far the analysis has considered the cost over a single 

orbit, but minimization of the total cost along the path from initial state to final state determines the optimal 

variation of elements. Equation (25) determines the incremental cost dU for an infinitesimal change in 

elements along the path ds by substituting Eqs. (21) and Eq. (14) into Eq. (24) (with the assumption that the 

path comprises many revolutions). Motion of hX is not considered in Eq. (25) because it begins and ends at 

zero and any excursion from zero would unnecessarily increase the cost. We now seek a solution to how all 

the other elements optimally change given a variation in any single element. 
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Following Edelbaum [4], the cost of changing the eccentricity and orientation determines the optimal 

change in semi-major axis by noting that ee, ep, and hY depend on a to the same power. Thus the path of Eq. 

(27) controls the optimal path of a in the following manner. If we neglect the potential coupling of wa and 

  (i.e. 0U   = ), then applying the Euler-Lagrange equation to   provides a constant of integration in 

Eq. (28). Equation (30) gives  as a function of a after integrating Eq. (29). The boundary conditions that 

a begins at a0 and ends at af solve for the constant k, and inverting Eq. (30) produces Eq. (32) of how a  

(approximately) optimally varies as a function of  Once the sub-cost  is determined, Eq. (33) can be 

used to determine the total cost.  
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Now, the problem remains of determining  along the transfer. In Eq. (34) it is noted that hY is an 

ignorable coordinate, and the Euler-Lagrange equation again provides a constant of integration in Eq. (35). 

The solution to Eq. (36) governs the optimal change in hY as a function of the eccentricity vector. 

Unfortunately this functional form can lead to nearly impulsive maneuvers when the change in orbit plane 

is much larger than the change in eccentricity, which is somewhat expected the integral of a magnitude, Eq. 

(22). Instead the nearly optimal approximation of Eq. (37) is used to determine how hY should vary with 

eccentricity for low-thrust transfers. The last step is to determine how eX and eY should vary along the 

transfer path. Reference [4] provides solutions to two simplified problems, but offers no general solution. It 

is observed, however, that the eccentricity vector usually does not stray far from a straight line connecting 

the initial and final points for very low thrust transfers. We therefore make a heuristic argument to solve for 

the optimal variation in orbital elements by beginning with a straight path through eccentricity space, Eq. 

(38). (Again, ,X Ye e  maps to ,e pe e  via Eq. (15).) 
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A first approximation to optimal time-free transfers from initial to final axial elements with inverse 

square power begins by specifying the path through eccentricity space Eq. (38), then solving for the 

evolution of the orbital plane, Eq. (37), and finally determining how the semi-major axis changes as a 

function of these elements via Eq. (32). The resulting cost provides an approximation of the transfer V in 

Eq. (39), where the average of 1/r2 over an orbit is used in Eq. (40). 
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We complete the state description for the initial guess by specifying how the true longitude L should 

vary along the transfer. The integral of the mean motion weighted by the incremental cost along the path 

approximates the mean anomaly in Eq. (41). The number of revolutions N is a free design parameter, and 

the mean anomaly provides a good estimate in Eq. (42) where the final longitude is adjusted by 2N in Eq. 

(43). The optimal value is typically within ± one revolution of this estimate. In Eq. (44) the mean anomaly 

estimate is made to match the true longitude bounds (as we still haven’t considered variations within a 

single orbit) and completes a full state description of the transfer as a function of the path variable s.  

Before further numerical optimization, we seek to model the path as a series of n segments. The 

somewhat arbitrary choice of constant change in eccentricity vector does not necessarily lend itself to a 

useful discretization of the path (e.g. many orbits could clump where the other elements change quickly 

relative to eccentricity). It is found that breaking the change in true longitude into segments inversely 

proportional to the orbit period as in Eq. (45) (so there are more segments on bigger orbits) improves 

subsequent convergence. The true longitude at segment boundaries LB is distributed evenly with respect to s 

as in Eq. (47), and the states are defined at the segment midpoints in Eq. (47).  The path is essentially 

redistributed by shifting ds so that M aligns with L. This series of segments can be thought of as an updated 

path variable where each segment represents and unitary change in s from 0 to n. 
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There is certainly opportunity to reduce the cost (or V) of this initial guess by choosing a different 

eccentricity path or including coupling of eccentricity and semi-major axis at the expense of a more 

complex algorithm. We forego complicating the algorithm further as this solution is only a first 

approximation of the low-thrust transfer, and more sophisticated approximations will come to bear in 

subsequent analyses. 

 

Suboptimal Refinement 

The next step is to include variations of the trajectory within each orbit and account for phasing and 

transfer time. Typically this would require numerical integration of the equations of motion. However, if 

we break the transfer into a moderate number of segments (say 10–20 per revolution) and assume that the 

semi-major axis and eccentricity remain constant and the thrust direction is fixed over each segment then 

the variation of the orbital elements over each segment can be determined analytically. In this way the 

trajectory calculation only requires a modest number of segments to capture the underlying dynamics, 

ultimately requiring fewer computations than numerical integration [5],[6]. After integrating Eqs. (12) over 

a segment s, the corresponding set of variational equations for axial elements are calculated via Eqs. (48). 

The segment boundaries are defined in Eq. (49) and occur at the midpoint between the nodes where the 

state is defined in Eq. (47). The values for L at the segment nodes and boundaries remain fixed.  

The derivation of the integrals in Eqs. (52) and (53) were greatly simplified by first rotating to orbital 

plane coordinates via Eq. (50). It should be noted that  = L because the axial elements are constant on 

each segment. The true longitude is continuous throughout, but the true anomaly is discontinuous across 

segment boundaries. It appears that the variational equations become singular when e = 0, but this is merely 

an artifact of expressing the integrals in orbital plane coordinates. Equations (54) are suitable if the 

eccentricity becomes vanishingly small. 
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e e

  
  



+ −

+

 − 
=  −  = − = −  

+ − 
  (53) 

 
0 0

0 0

cos  2 sin  ,  sin  2 cos  

cos  ,    sin  

X r Y re e

X h Y h
e e

e L u L u e L u L u

h L u h L u

 = =

= =

= − +  = − − 

= − = 
 (54) 

The propulsion system model for this step is power limited, but the specific impulse (and thrust) can 

optimally vary as reflected in Eqs. (55)–(57), where P1 is the jet power at 1 AU. The objective Eq. (58) is to 

maximize the final mass or equivalently minimize the square of the control effort. As with the prior 

analysis of Eq. (13), this problem is easier to solve than the constant specific impulse model because the 

thrust magnitude is not constrained. We first optimize only the in-plane motion Eqs. (59) then solve the 

out-of-plane dynamics afterwards, taking advantage that the angular momentum does not affect the 

dynamics in Eq. (48) and the cost associated with uh is separable from the in-plane term of J.  

 ( )
22

12Tdm dt m P AU r = −
 

a a  (55) 

 ( )2 2 2 2 2

12 1T

X Ydm dL m P AU a e e  = − − −
  

u u  (56) 

 ( )2 3/2 2 2 2

1/ 2,  1T

m m X Ym m w w L P AU a e e  = = −  − −
  

u u  (57) 

 ( )2 2 2

01 1 1 2 1 2f m r m hJ m m w u u ds w u ds= − = + +   (58) 

 
 

   

,  

,  
X Y

T

X Y

T T

e e t r

e e t

u u 



   

= =

= =

X f X

λ υ
 (59) 

The Hamiltonian Eq. (60) of this optimization problem determines the dynamics of the Lagrange 

mulitpliers  via Eq. (61) [7]. We further simplify the dynamics by (suboptimally) decoupling the 

propagation of the Lagrange multipliers from the controls by assuming that  = 0 at the beginning of each 

iteration. As demonstrated in Eq. (62), only t  has non-zero partials that affect the propagation of λ , 

resulting in the relatively simple solution of Eq. (63). This model is computationally efficient because the 

partials of the other elements are not required. The optimal value of  makes the partial of the Hamiltonian 

vanish [7] and solves for the control as a function of final values of  in  Eq. (64).  

 
21 2 ,  1 2

X Y

T T

m h h X h Y mH w u h h w   = + + + + =λ f υ υ  (60) 
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T T TH + = → = − −
X X X

λ 0 λ f λ  (61) 

  ,  
T

x y

d
e e

d
 = → = =Xυ 0 0 0

X
 (62) 

 ( )
0

4 4 4 3,  
T

f x x
n

t ds = = +  
  λ Φλ Φ I 0 X  (63) 

 
1 T

m fH w−= → = −
υ υ

0 υ f Φλ  (64) 

We begin with the solution of axial elements from the first approximation Eq. (47) in order to determine 

f, wm, and , but do not require a control history or guess for the Lagrange multipliers. For simplicity we 

set the controls to zero and artificially constrain the orbital elements to their initial state causing a first-

order change in t  as shown in Eq. (65), which gives the error in the final state. We seek a control history 

that propagates the system to the final state in Eq. (66), where T maps changes in f to the final state 

because of the backward propagation in Eq. (63). The system of Eqs. (66) solves the set f and 

corresponding control that targets the final state, and is numerically efficient because it only considers the 

four in-plane elements and is positive definite. The new control history Eq. (64) provides an estimate for 

the optimal trajectory, where f is not updated during the propagation in Eq. (67) so that 
*

f f=X X  exactly. 

The update to the path of axial elements and control gain wm are restricted by a scaling factor  to that the 

trajectory does not vary too much from iteration to iteration, dramatically improving convergence. We 

initially set  = 0.5 then reduce to  = 0.3 for cases that do not converge to a loose tolerance of 10-3 after 

about 10 iterations, and cases that tend toward e > 1 are discarded. The controls are artificially reset to zero 

for each iteration and recalculated from the updated values of f, wm, and  from the new estimate of the 

optimal trajectory X. 

 ( ) 0 0
0

0 0 0
n T

f t t ds= − − −  −Δ X X X X X  (65) 

 ( )1

0 0

n n
T T T

m fds w ds−= = − υ υ υ
Δ Φ f υ Φ f f Φ λ  (66) 

 *

0
0

n

ds= +  υ
X X f u  (67) 

 ( ) ( )* *

1 , 1 , ,,  ,  0 1i i i m i m i m m iw w w w  + += + − = + −  X X X X  (68) 

Once the in-plane motion has been determined optimization of the out-of-plane motion requires only 

one iteration. Because hX and hY do not influence the dynamics, their Lagrange multipliers Eq. (69) are 

constant. As in Eq. (64) the optimal control is a function of the associated Lagrange multipliers, and the 

path of the orbital plane is ultimately determined by their solution in Eq. (71). 

 0,  0
X Yh h = =  (69) 

    1 ,  
X Y

T

h m u h h u X h Y hu w h u h u −= − =    h h  (70) 

     1

,
0

0
X Y

n
T

Y f h h u m uh w ds  −= − h h  (71) 
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Optimal Bounded Control 

At this point the low thrust transfers are modeled accurately enough to estimate propellant over the 

transfer and the maximum deliverable mass, but the thruster model Eq. (55) is inaccurate for typical 

thrusters with constant exhaust velocity c = gIsp. The thruster model Eq. (72) solves this issue where 

( )Thrust dm dt c− =  when the thrust T and flow rate m throttles are equal. A major cause of 

consternation while optimizing low-thrust transfers with constant specific impulse is accounting for the 

“bang-bang” control of when the thrust should be fully on or fully off. To this end a new formulation for 

the thrust and flow-rate throttles is developed in Eq. (73), where um is the governing throttle control. The 

thrust and flow rate throttle map from 0 to 1 as the control increases from 0 to 1 in Figure 1. This 

formulation employs a parameter  that is varied from 1 to 0, where the model is less accurate but robustly 

converges near 1, and accurately models a constant-specific-impulse thruster with bang-bang control at 0. 

When  > 0 in Figure 1 T > m which overestimates the specific impulse at low throttle, but when  = 0 in 

Eq. (73) T = m and the specific impulse is constant for all um. This approximation is particularly suited to 

algorithms that take advantage of fixed segment placement where adjusting segment boundaries to the 

exact switch times (as in Ref [8]) would disrupt the underlying structure. In addition to the throttle control, 

the unit vector l controls the direction of thrust so that u takes the form of Eq. (76). 

 
( )

( )

2

1

2 2

1

2

2

T

m

Thrust P AU r c

dm dt P AU r c





=

= −
 (72) 

 
( ) ( )

( ) ( )

2 3

2 3

3 2 2

3 2

T m m m

m m m

u u u

u u

   

  

= + − − −

= − − −
 (73) 

 ( )2 2 2 2

12 1m X Ydm dL P AU c a e e  = − − −
  

 (74) 

 ( )2 2 2 2

1,  2 1m m m X Ym w w P AU L c a e e  = = −  − −
  

 (75) 

 
2

1,  2T T Tw m w P AU c = =u l  (76) 

    1
T T

r hl l l= =l , l l  (77) 



 12 

 

Figure 1 The thruster model approaches constant specific impulse as  approaches 0. 

The objective function for this final step is to maximize the final mass for a fixed initial mass and the 

full state, now including mass, is considered during optimization. The final value for the mass Lagrange 

multiplier is -1 from the objective Eq. (78), leaving the other 6 multipliers in Eq. (78) as unknowns to target 

the final state. The associated Hamiltonian for this problem Eq. (81) includes a Lagrange multiplier l for 

the thrust direction constraint but the throttle control is ostensibly left unconstrained. The Hamiltonian is 

rearranged by collecting the partials of H with respect to u in Eq. (82) to highlight the effect of l on H. By 

inspection, H is minimized (a necessary condition for optimality [7]) by pointing opposite Hu in Eq. (84). 

(An alternative approach solves for l in Eq. (85).)  

 J mf= −  (78) 

 
 

 

,  

X Y X Y

T

X Y X Y

T

e e h h t m

e e h h t m





      

= =

=

X f X

λ
 (79) 

  
X Y X Y

T

f e e h h t
s n

     
=

=λ  (80) 

 ( )1T T

lH = + −λ f l l  (81) 

 ( ) ( )1T

r r h h T T m m m t lH H l H l H l w m w t      = + + + + + −l l  (82) 

 

X Y

X Y

x Y

r r r e X r e Y r

e X e Y

h h h X h h Y h

H H u u e u e u

H H u u e u e u

H H u h u h u



     

   

   

 

=   =   +   +  

=   =   +   +  

=   =   +  

 (83) 

 flow rate 

 = 0  = 1  = 1  = 2  = 2 

thrust 
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   2 2 2T

r h r hH H H H H H = − + +l  (84) 

   2 2 22 0 2T

r h l l r hH H H H H H H  = + = → = + +
l

l  (85) 

After applying Eq. (84) the optimal throttle level causes the partial in Eq. (86) to vanish and solving Eq. 

(87), where  acts as a switching function. The optimal value for the throttle Eq. (89) always remains 

between zero and one as demonstrated in Figure 2. The parameter  implicitly smoothes the control and 

walks the throttle towards a bang-bang structure. However, unlike an explicit smoothing function the value 

of um in Eq. (89) is the exact optimal solution for a given value of . 

 ( ) ( )2 2 2 0m T r h T m m m m mH u w H H H m u w u     = − + +   +   =  (86) 

 ( )( ) ( )( ) 22 3 2 1 3 2 1 0m mu u     − − − + + − − =    (87) 

 ( )2 2 2

T r h m mw H H H m w = + +  (88) 

 

( )

( )( ) ( )( )

2

0 1 0 1

2

1 0 1

0 2 1 2 2

1

1 2 1

1

,  3 2 1 ,  3 2 1

m

k k k k

u

k k k

k k k k k







     

 − − 



= =


− − 


= = − − − + = − −  

 (89) 

 

Figure 2 The throttle control optimally remains below the maximum level and adopts an on/off 

structure as  approaches 0.  

The optimization process begins with the solution for the axial elements, control u, and , from the 

suboptimal refinement step. An initial guess for the mass is available by propagating Eq. (57), and the 

 = 0  

 = 0.1 

 = 1 

 = 2 
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initial flow-rate is approximated by equating Eq. (57) and Eq. (75) in Eq. (90). The Lagrange multipliers 

are propagated backwards from their final values and separated into a term that depends on the final mass 

Eq. (91) and a term from the state transition matrix Eq. (92). This propagation is simplified somewhat by 

noting that   0X Yh h t  =f . The new history of   produces an updated control u in Eq. (76) via Eqs. 

(84) and (89). This new control then creates a departure from the original path for the in-plane parameters 

, eX, eY in Eq. (94), which in turn changes the flight time in Eq. (95). The error in the final state is 

collected in Eq. (97), and the sensitivities are mapped back to f in Eq (98) leading to an update in the 

estimate of  in Eq. (99). Instead of performing a full iteration and recalculating Eqs. (48), the error  is 

first driven down by iterating on Eqs. (93)–(99) while holding m, wm, fu, and  fixed, so that the 

optimization of the control occurs without varying the state sensitivities. After a few sub-iterations (3 tends 

to work well) the new controls u and m update the previous guess in step restricted by  (similar to Eq. 

(68)). A new estimate for the optimal trajectory is produced by propagating the variational Eqs. (48) and 

(75) while holding u and m fixed, so that the path update occurs without varying the controls. This 

decoupling of the state and control dynamics results in a marked improvement of the region of 

convergence. 

 ( )
2

2

12T

m mc P AU  =
 

u u  (90) 

  * * *

1 6,  1T

f x= − = −
X

λ f λ λ 0  (91) 

 
6 6

1 6

,
xT

f

x

 
= − =  

 
X

I
Φ f Φ Φ

0
 (92) 

 
*

f= +λ λ Φλ  (93) 

 ( )    0 ,0 ,0X Y X X Y Ys e e ds e e e e  = − − − −E  (94) 

  ( )*

0

n
T

X Y ft t t e e ds t= +   − E  (95) 

    ,
0

0
n

X Y Y fh h ds h= −H  (96) 

  *
T

f t=Δ E H  (97) 

 
( )

( )
5 7

0 ,

n x

Tf ds
t

 
  =   

  
 u

I
Δ λ f u λ Φ

Φ X
 (98) 

 ( )f f+    =Δ Δ λ λ 0  (99) 

 ( ) ( )1 , 1 , ,, ,  0 1i i i m i m i m m i      + += + − = + −  u u u u  (100) 
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RESULTS 

We first consider individual transfers to Mars to investigate the behavior of the optimization sequence. 

In Figure 3 the path of the first approximation determines the number of revolutions around the sun and 

locks in the segment spacing with respect to true longitude, implicitly solving the phase problem. The 

linear path through eccentricity space is rather crude, but the suboptimal refinement results in a nearly 

optimal path of the orbital elements for the transfer in Figure 4. However, the resulting thrust profile is 

clearly infeasible in Figure 5, where subsequent iteration drives the solution towards feasibility with control 

that is  optimally bounded. The algorithm is applied to a global search of transfers to Mars in Figure 6, 

where trajectories are generated in 5-day increments and contain 88 segments. For this problem the 

maximum initial mass is 30 tons (e.g. to deliver cargo for a human mission) with a jet power of 50 kW at 1 

AU, and 2500 s specific impulse. Subsequent refinement produces a similar plot in Figure 7, where the 

control bounds and optimality conditions have been taken into account. This plot is an analogue to the 

“bacon plots” (i.e. SEP versions of the “pork-chop” plot) recently developed for Mars mission formulation 

[9]. Rendezvous with comet 63P/Wild 1 poses a more difficult problem in Figure 8. This comet has an 

eccentricity of 0.65, a semi-major axis of 5.6 AU, and an inclination of nearly 20 degrees. For this example 

the maximum initial mass is 1 ton (e.g. to deliver a robotic orbiter) with a jet power of 10 kW at 1 AU, and 

2500 s specific impulse. As with the Mars example the solution with bounded controls displays the same 

structure as the suboptimal refinement result, with a moderate decrement in performance. A high-level 

assessment and comparison of the algorithm is summarized in Table 2, where the capability to run 

extensive trade studies with same-day turnaround of results is demonstrated.  

 

Figure 3 The number of revolutions in the first approximation shapes the optimized solution. 

 

Suboptimal refinement 

Optimal bounded control 

First approximation 

Orbit of Earth 

Orbit of Mars 

1-yr transfer 3-yr transfer 
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Figure 4 The suboptimal approximation closely the tracks eccentricity vector of optimal solution. 

 

 

Figure 5 The bounded control matches the switch times of a fully optimized transfer. 

Suboptimal refinement 

Optimal bounded control 

Integrated with  

optimized switching 

 First approximation 

Suboptimal refinement 

Optimal bounded control 

Earth 

Mars 

1-yr 

2-yr 

3-yr 
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Figure 6 Trade space of transfers to Mars from suboptimal refinement step. 

 

Figure 7 Optimized trade space of transfers to Mars. 
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Figure 8 Trade space of transfers to 63P/Wild 1 from suboptimal refinement step. 

 

 

Figure 9 Optimized trade space of transfers to 63P/Wild 1. 
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Table 2. Summary of accuracy and run time of different approaches. 

Target Mars Wild 1 

Solution phase 
Average error 

in final mass 

Approx. CPU time 

per 100,000 cases 

Average error 

in final mass 

Approx. CPU time 

per 100,000 cases 

First 

approximation 
10% 10 seconds 15% 10 seconds 

Suboptimal 

refinement 
7% 3 minutes 15% 3 minutes 

Optimal 

bounded control 
0.5% 1 hour 10% 2 hour 

MALTO [10] 

(for comparison) 
0.1% ½ week 0.5% 1 week 

Integrated with 

optimized switching 
― 2 weeks ― 1 month 

 

CONCLUSION 

A judicious choice of inertial coordinate frame and axial elements decouples the in-plane and out-of-

plane dynamics and allows for a semi-analytical initial guess of low-thrust interplanetary transfers. This 

first approximation permits a very rapid characterization of the trajectory trade space for suboptimal 

unbounded controls. This suboptimal refinement in turn initializes optimization of thrust controls that are 

optimally bounded for an accurate representation of the trajectory trade-space. The region of convergence 

of the optimal control problem increases by alternating between solving for the optimal controls on a fixed 

path and propagation of a new path with fixed controls, as opposed to propagating the state and co-state 

dynamics simultaneously. The convergence properties are improved further by a novel control formulation 

where the  throttle optimally remains between minimum and maximum bounds as a bang-bang thrusting 

structure develops. The run time to develop a full trajectory trade space is reduced by orders of magnitude, 

permitting real-time formulation of low-thrust interplanetary missions. 
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